NANOCOMPOSITES FOR ELECTROCHEMICAL SUPERCAPACITORS
WO09109685
Nanocomposite materials for energy storage applications are becoming of great interest due to the properties provided by its various constituents. Among possible nanocomposites that are being currently synthesized, those from layered double hydroxides (LDH) are attracting particular attention, especially carbon and metal oxides nanocomposites. These nanocomposites based on LDH have great potential applications in electrochemical devices such as supercapacitors. However, most new materials investigated turned out to be unfeasible from the commercial standpoint, due to its high cost and complexity of manufacture. Researchers from Universitat de València have developed new low cost nanocomposite materials with excellent supercapacitive and giant magnetoresistance (GMR) properties. The nanocomposites are obtained through a simple single stage and low temperature process, and from highly available and low cost materials, such as LDH.

Applications: The new nanocomposites are useful for all those devices that require materials with supercapacitive properties. Supercapacitors (or ultracapacitors) are mainly used for energy storage: "energy smoothing" and momentary-load devices, KERS devices used in vehicles, replacing batteries for specific cases, smaller applications like home solar energy systems, etc. On the other hand, due to GMR properties these materials are also useful for spintronics applications, as could be read heads of modern hard drives and magnetic sensors. Finally, the resulting carbon nanoforms have an extremely wide range of potential applications in materials science, electronics, and nanotechnology. Advantages: The new materials have the following advantages over existing materials in supercapacitor’s sector: - Supercapacitive properties: they have specific capacitance values much higher than those obtained by commercial nanostructured carbon electrodes. - Low cost: obtained by a chemical process of a single stage, with a single precursor, at low temperature, and highly available, non-polluting and low cost materials. - Good cyclability: testing in cyclability is promising in terms of electrochemical and mechanical stability. In parallel to its advantages as supercapacitors, the nanocomposites show the advantages associated with the following additional properties: - Giant magnetoresistance, GMR: this property is observed at room temperature, and high magnetic fields are not needed. - Source of carbon nanoforms: based on the nanocomposite, can be obtained a mixture of carbon nanoforms consisting of nano-onions and multi-walled nanotubes.



.jpg)